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Abstract. The methodology for active control of supply in water networks is presented. It is 
based on the assumption that the water network exhibits a steady state of flow and the water 
heads in the network’s nodes can be measured for an inspected part of the network. Making use 
of the graph-based model of a water network and employing the so-called Virtual Distortion 
Method, the problem of active control can be formulated as a constrained optimisation problem. 
The water supply is minimised subject to constraints on the water head in the network’s nodes. 
The optimal solution is expected for active constraints. Analogies between the presented water 
network modelling and the truss modelling in structural mechanics are described. 
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1 INTRODUCTION 
A software tool for signal processing in control of supply in water networks is presented. It 

is assumed that the water pressure in the network’s nodes in a distance from a controlled inlet 
can be measured and also that the inlet pressure can be modified in real time in a controlled 
way. Then, making use of the analytical network model (cf. Refs. 1, 2) of this installation and 
using, the so-called Virtual Distortion Method (VDM) presented below, the control of water 
supply can be performed. 

The problem of management of water sources is more and more important on a world 
scale. Therefore, there is a requirement for an automatic water supply control. The proposed 
approach is based on continuous observation of the pressure distribution in nodes of the water 
network. Having a reliable (verified versus field tests) numerical model of the network and its 
responses for determined inlet and outlet conditions, any modifications to the normal network 
response (pressure distribution) can be detected. Then, applying the below proposed 
numerical procedure, the correction of water supply can be determined. 

The proposed methodology is based on the so-called Virtual Distortion Method (VDM) 
approach, applicable also in the problem of damage identification through monitoring of 
piezo-generated elastic wave propagation (Ref. 3). This technique (called Piezodiagnostics) is 
focused on efficient numerical performance of inverse, non-linear, dynamic analysis. The 
crucial point of the concept is pre-computing of structural responses for locally generated 
impulse loadings by unit virtual distortions (similar to local heat impulses). These responses 
stored in the so-called influence matrix allow for a composition of all possible linear 
combinations of the influence of local non-linearities (due to defect) on the final structural 
response. Then, using a gradient-based optimization technique, the intensities of unknown, 
distributed virtual distortions (modelling local defects) can be tuned to minimize the distance 
between the computed final structural response and the measured one. 

2 DEFINITIONS AND LINEAR ANALYSIS 

The so-called incidence matrix L, defining topology of the network, takes the following 
form for the presented example: 
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The rows of matrix L correspond to the network’s nodes while its columns correspond to the 
branches. For instance, if you take column No. 1, responsible for the network branch No. 1, 
matrix L simply tells you that the branch connects nodes Nos. 1 and 2 and the assumed 
direction of the flow is from node No. 1 (value = 1) to node No. 2 (value = -1). For the 
remaining, unconnected nodes in the column No. 1, matrix L takes the 0 values. 
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Let us now define the governing equations for the water network in a steady-state flow. 
The equilibrium of the system relating the internal flow distribution in the network’s branches 
Q [m3/s] with the external inlet/outlet q [m3/s] is expressed as follows:  

 
LQ = q           (2.2) 
 

where each equation “ i ” determines the balance of inlets and outlets at node “ i ”. The 
number of elements at vectors Q and q is equal to the number of nodes in the network. The 
analogous relation for truss structures relates internal and external forces (via the so-called 
geometrical matrix). The following continuity equation relates the water heads H [m] at the 
network’s nodes with the so-called pressure heads ε [m] in the network’s branches: 

 
LTH = ε           (2.3) 
 

where each equation “ j “ describes flow continuity along the loop “ j “. The number of 
elements of vectors H and ε is equal to the number of loops in? the network. The analogy for 
truss structures is the geometrical relation between displacements and strains. The constitutive 
relation for water networks relates the pressure head ε with the flow Q in the branches (strain-
force relation in trusses).  

 
Q2 = R ε           (2.4) 
 
The constitutive relation (2.4) is non-linear and the diagonal square matrix R (dimension 

equal to the number of branches in the network) is composed of the hydraulic compliance 
parameters Ri of each branch. R [m2/s] is a function of the characteristic of a branch K [m3/s] 
(depending upon pipe material, diameter, filtration, etc.) and its length l [m] as follows: 
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Nevertheless, let us temporarily assume the linearity of the relation (2.4) i.e. 

 
Q = R ε           (2.6) 
 

Substituting Eqs. (2.6) and (2.3) into (2.2), the following formula can be obtained: 
 
LRLTH = q           (2.7) 
 

allowing determination of water pressure in nodal points as the response for determined inlets. 
For the water network, shown in Fig.1, assuming inlet in node No.1 and outlet in node 

No.4, the set of equations (2.7) takes the following form: 
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It was assumed that the network is supplied only through node No.1 with the inlet intensity q1. 
The flow coefficients Ri

' for fictitious branches, varying in the range between 0 and 1, can be 
used to determine the opening degree of the outlet valves. The intensity of the only outlet in 
node No. 4 can be expressed as: 

 
)HH(Rq 04

'
44 −=           (2.9) 

 
where the flow coefficient R'

4  is also equal 1 (outlet valve fully open). The flow coefficients 
R'

2  and R'
3  are equal 0, which means that the outlet valves in nodes Nos. 2 and 3 are closed. 

Note that the inlet/outlet balance must be met (analogy to the external equilibrium condition 
for truss structures, which means that external loads have to be equilibrated by reaction forces 
in supports), that is � =

i
i 0q . In our case the condition simply yields q1 = q4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fictitious branches 
 Real branches  

Fig.1 Water network 

Substituting (2.9) to (2.8), assuming the reference value H0 = 0 and rearranging the set of 
equations we can obtain the following: 
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            (2.10) 

 
the solution to the above set of equations gives us pressure heads for the network supplied by 
the inlet q1, and one outlet located in node No.4.  

Generally, the set of equations (2.7) can be expressed (including the outlet conditions) in 
the following forms: 
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where H* denotes water head in outlet nodes. The last equation corresponds to the case with 
the water head measured in the outlet nodes (and R’ coefficient unknown). Contrarily, the 
former formula corresponds to the case with the coefficient R’ measured (in the outlet node) 
and the water head H’ unknown.  

4 NON-LINEAR ANALYSIS 
By analogy to the Virtual Distortion Method (VDM) applicable to the truss structures 

(cf.[2]) let us postulate that local modification of a network parameter can be introduced into 
the system through the virtual distortion ε0 , incorporated into the formula (2.6): 

 
LR(LTH -  ε0) = q          (3.1) 
   

The virtual distortion εi
0 is of the same character as the pressure head εi (see Fig. 2) and its 

physical meaning is an additional pressure head externally forced in branch “ i “ (e.g. due to a 
locally installed pump). 

The influence of virtual distortions on the resultant flow redistribution can be calculated 
using the so-called influence matrix Dij collecting i responses (row-wise) in terms of water 

heads 10@
iH =ε  induced in the network by imposing the unit virtual distortion ε o

j=1 generated 

consecutively in each network branch j. Thus each influence vector 10@
iH =ε  can be calculated 

on the basis of the following equation obtained from Eq. (2.1): 
 

LRI*q H L R L 1@T 0

+==ε          (3.2) 
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Fig. 2. Distortion simulating water flow (pressure head modification) in branch No. 4 

The vector q* disregards the external inlet and outlet (the flow is now provided by the 
imposition of virtual distortion), and it accounts for water flow distribution in the closed 
network (cf. Eq. (2.8)). There is a set of j- (j- the number of branches) equations (2.2) to be 
solved in order to create the full influence matrix D. Each time the right hand-side changes as 
the unit virtual distortion is applied to another branch. In practice this can be realised by 
applying a pair of inlets-outlets Lik Rkj

0
jε  corresponding to each branch (cf. Eq. (2.1)) – it is 

the so-called compensative charge. 
So the parameter modification in the system is accounted for by superposing the so-called 

linear response of the original network and the so-called residual response due to imposition 
of the virtual distortion. Therefore, the resultant water head distribution can be expressed as: 
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and the resultant water flow as: 
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Making use of the following  substitution: Dε = LTD, the above relations take the form (cf. 
Eqs. (3.3), (3.4)): 
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Non-linearity of constitutive relations (cf. Eq. (2.4)) can be simulated through virtual 

distortions. To this end, let us assume that this relation is approximated through a piece-wise-
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linear function, for example composed of two pieces (see Fig. 2.4). The algorithm for non-
linear analysis of water networks is analogous in this case to the progressive collapse analysis 
of elasto-plastic truss structures (cf. [2], [5]), where the sequence of overloaded (i.e. 
exceeding the yield stress limit due to increasing load intensity) elements should be 
determined and the corresponding sequence of “growing” sets of linear equations solved. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Piece-wise-linear approximation of the non-linear constitutive relation 

By analogy to structural mechanics, the conditions for simulation of non-linear behaviour 
of network branches (see Fig. 3) take the following form (describing line AB): 

 
( )ii

*
iii

~RQ
~

Q ε−ε=−           (3.7) 
 

Denoting 
i

*
i

i R
R=γ  and substituting  Eqs. (3.5), (3.6) to Eq. (3.7), the following set of linear 

equations is obtained: 
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where 0

lε denotes virtual distortions modelling nonlinear behaviour in branch “ j “.  

The set (3.8) should be solved with respect to the unknown virtual distortions 0
lε  where the 

indices k, l run through the branches of non-linear characteristics only. More accurate 
approximation of non-linearities requires application of more piece-wise linear sections and 
therefore leads to the increase of virtual distortion components 0

lε to be determined. 
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5 CONTROL OF WATER SUPPLY: LINEAR CASE 
Let us discuss the control of water networks. The objective is to minimise the water supply 

(energy saving) keeping the pressure in all outlets above some limit value. Assuming that the 
height of outlet nodes can be monitored in real time, specially programmed controller can 
adapt (through a feedback procedure) the inlet intensity to meet the minimum supply 
condition. The aim of the following analysis is to determine the basis for the controller 
operation.  

In the case of low pressure (below the imposed limit value) in any of the outlets, the 
controller provokes the increase of the inlet to achieve the right pressure level. Contrarily, in 
the case of pressure higher than the limit value in all outlets, the controller provokes reduction 
of the inlet in order to meet the limit-pressure-value in at least one outlet.  

The problem of active control of the inlet intensity γq1 (where γ denotes the controlled inlet 
intensity) can be formulated as follows: 

 
min γ           (4.1) 
 

subject to constraints (2.11a or 2.11b) and the following conditions requiring the pressure in 
the outlet joints to be not smaller than some minimal admissible value H’: 

 
H ≥ H’           (4.2) 
 
Differentiating the Eq.2.11a with respect to γ the following set of linear equations allowing 

gradient determination can be provided: 
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The solution of the linear optimisation problem formulated above with the objective 

function (4.1), linear constraints (2.11a or 2.11b) and the convex domain of admissible 
solutions (4.2) can be found on the boundary of the domain constrained by (4.2.). Calculating 
the? gradient (4.3) the optimal solution can be easily found (e.g. through the simplex method). 
Certainly, the generalised problem corresponds to the multi-inlet case, when the total inlet 
intensity: �iγiqi has to be minimized as the objective function, rather then the scalar value 
(4.1). Also, the following formula for water heads has to be taken into account in this case: 
H=�iγiHi, where Hi describes the water heads in response to one inlet qi.  

Let us now discuss the above problem using the network example illustrated in Fig. 4. We 
assume that the coefficients R’3 and R’4 were previously measured and we have to calculate 
the unknowns: H1 , H2,  H3 , H4 in order to determine outlets q3 and q4.  In this case the 
corresponding set of equation looks as follows: 
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where:  
 

)( 30
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33 HHRq −=  

)( 40
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44 HHRq −= ,   R  = 

l
K 2

 ,                                   (4.5) 

and: 
 
K- the characteristic of the element,    l - the element’s length,  
H - the water pressure in the node (height of water) 
q - the flow in the branch. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The water supply control concept 

Substituting Eqs. 4.5 to 4.4, the following set of equations can be derived (cf. 2.11a): 
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where it was assumed that the network is supplied only through node No.1 (inlet with 
intensity q1) and the only outlets are through nodes No.3 and No 4. =R'

2  0, which means, that 
the outlet in node No. 2 vanishes. The unknowns H1, H2, H3, H4 can be determined from Eqs. 
4.6 knowing the measured values of R’3, R’4 and q1.  

Assume the following data: K1=K2=K3=K4=K5=0.061m3/s, l1 = l2 = l3 = l5 = 5.000 m, 
l4=7.071 m,  q1=0.005 m3/sec, H0 = 0.0 , H’=0.00228  and the following measurements: R3

’ = 
R4

’ = 0.5 (cf. Fig. 4). Now, we can assume that the network was monitored for a certain 
period of time and that the parameter γ = 1.0 corresponds to the inlet intensity for the 
observed, stabilised steady state flow.  

Solving the set of equations (4.6) one can get Hi =[4.12680  1.52730   0.007724  0.00228 ], 
which means that the constraint H4≥H’ is the active one. The obtained result is located, on the 
boundary of the admissible domain (4.2) and it is the optimal solution for the case when γ = 
1.0.  
The pressure head looks as follows εL= [ 2.5995   4.1191   1.5250   1.51958   0.00544 ] and 
the outlets are as follows:  q3 = 0.00386 m3/s, q4 = 0.00114 m3/s. Note that the minimum 
height of outlets is H4 = H’ = 0.00228m and that no modification of the inlet intensity is 
required. 

Now, let us analyze another case of the above network, when due to the outlets 
modification (e.g. coefficients R3

’ = 0.80, R4
’ = 1.00 are measured) water heads drops below 

H’: Hmin  < H’ and an increase of the inlet intensity is required. The set of equations (4.6) 
leads to H = [4.1243   1.5252    0.004829  0.001137] and the corresponding pressure heads 
εL=[ 2.5991   4.1195   1.5241   1.5204   0.0037 ]. 
As Hmin=H4 < H’ we can expect that for the optimal solution the following condition will be 
satisfied: H4 = H’. Then, instead of following a general, linear optimisation procedure with 
gradient calculation we can solve the rearranged set of equations (4.6) with respect to 
unknowns: H1 , H2 , H3, γ :  
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which leads to H1 = 8.265,    H2 = 3.056,   H3 = 0.0097,    γ =2.0034 . 
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However, if more than one inlet is taken into account the gradient-based optimisation 
technique should be used to reach the optimal solution. 

6 CONTROL OF WATER SUPPLY: NON-LINEAR CASE 

     The problem of active control of the inlet intensity γq1 (where γ denotes the controlled 
inlet intensities) can be now generalised for the non-linear case:  

 
min γ           (5.1) 
 

subject to constraints (2.11a), with distortions modelling non-linearity, and (3.8): 
 

 L R ( LT H – β0 ) – I R’ H  = �
�

�
�
�

�

0

q
        (5.2) 

 
R ( LT H– β0 ) – )~ - H L (RQ

~ T* ε=        (5.3) 
 

where: 
 
LT H = LT HL + LT D βo         (5.4)

  
and: 

 
H≥ H’           (5.5) 
        

Substituting (5.4) to (5.2) and (5.3) one can get: 
 

L R [ LT HL + ( LT D – I ) β0 ] – I R’ ( HL + D β0 ) = �
�

�
�
�

�

0

q
     (5.6) 

  
[R ( LT D – I ) - R* D] β0 =  R L)RR(~R Q

~ *T** −+− ε      (5.7) 
 
The set of equations (5.6) allows the determining of linear response HL and the influence 

matrix D. Then, the formula (5.7) can be used to compute virtual distortions βo modelling 
non-linearities in the progressive tuning of the solution. 

 
Assuming 
 
H = γ HL + Dβo          (5.8) 
 

the following gradients can be calculated from (5.8) and (5.7): 
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γ
β+=

γ d
d

DH
d
dH 0

HL          (5.9) 

[ R ( LT DH – I ) - R* DH ] 
γ
β

d
d 0

= LT* HL)RR( −                (5.10) 

The gradients (5.9), (5.10) change during the progressive analysis, when the set B of non-
linear branches is modified. Calculating dβo/dγ from (5.10) and then (after substituting this 
result to (5.9)) dH/dγ, the gradient of the objective function can be derived. On this basis, a 
gradient based non-linear optimisation procedure can be used to reach the solution (cf. 
WATNET-C algorithm, Table 1) for which at least one of the constraints (5.5) should be 
active. 

Table 1 WATNET-C Algorithm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

N

Y 

Set initial data 1,,~
0 =γε   * ,qR  

        δ - small parameter, ∆ - step length in optimisation process  

update inlet intensity q1 = γ q1 

Solve the NL analogy problem on the basis of (5.6),(5.7) 

Determine minimal value of the controlled water heads Hm 

Check the switching condition: 
�Hm – H’ � ≤ δ STOP 

update inlet intensity: 
 

γ = γ -
dH
dγ

( Hm – H’ ) ∆ 
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Of course, the generalised problem corresponds to the multi-inlet case, when the total inlet 
intensity: �iγiqi has to be minimized as the objective function, rather than the scalar value 
(5.1). Also, the following formula for water heads has to be taken into account in the above 
formulas in this case: HL=�iγiHL

i, where HL
i describes the water heads in response to one inlet 

qi.  
Let us finally demonstrate the result of active control on the basis of the example discussed 

above, however, with non-linear properties determined by parameters 0.3~ =ε  and α = 0.5, H’ 
= 0.0025m. Assume the following data: K1=K2=K3=K4=K5=0.061m3/s, l1 = l2 = l3 = l5 = 
5.000 m, l4=7.071 m, q1=0.005 m3/sec, H0 = 0.0 and the following measurements: R3

’ =0.80, 
R4

’= 1.0, α = 0.5 and 0.3=ε ). 
First, we have to calculate the influence matrix D, HL and εL from (5.6) and then the value 

of distortions modelling the non-linearity from Eq. (5.7) which leads to βo = [ 0.000   
0.807343   0.000   0.000   0.000  ]. 
The resultant water heads calculated from (5.8) take the following form H = [4.6193
 1.7081      0.00466  0.00127] and the corresponding pressure head looks as follows 
ε =  [ 2.9113   4.6147   1.7068   1.7034   0.0039 ] . 
From this solution we can see that the water head H4 is smaller than H’ which means that the 
inlet has to be increased in order to achieve the right level. Following the gradient-based 
algorithm (Table 1) the optimal solution can be reached (for γ =2.2) βo = [2.7774  4.6598      
0.3858   0.3824   0.000 ] and H = [12.3289 3.7741   0.0093   0.0025]. 

As long as the inlet is limited to one node the optimisation process is trivial and limited to 
only one control parameter. However, having multi-inlet water network, which is the case in the 
majority of real large installations, the algorithm described in Table 1 with gradient-based 
optimisation approach (for several control parameters) is required. 
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